High-resolution visualization of fibrinogen molecules and fibrin fibers with atomic force microscopy.
نویسندگان
چکیده
We report an atomic force microscopy (AFM) study of fibrinogen molecules and fibrin fibers with resolution previously achieved only in few electron microscopy images. Not only are all objects triads, but the peripheral D regions are resolved into the two subdomains, apparently corresponding to the βC and γC domains. The conformational analysis of a large population of fibrinogen molecules on mica revealed the two most energetically favorable conformations characterized by bending angles of ∼100 and 160 degrees. Computer modeling of the experimental images of fibrinogen molecules showed that the AFM patterns are in good agreement with the molecular dimensions and shapes detected by other methods. Imaging in different environments supports the expected hydration of the fibrinogen molecules in buffer, whereas imaging in humid air suggests the 2D spreading of fibrinogen on mica induced by an adsorbed water layer. Visualization of intact hydrated fibrin fibers showed cross-striations with an axial period of 24.0 ± 1.6 nm, in agreement with a pattern detected earlier with electron microscopy and small-angle X-ray diffraction. However, this order is clearly detected on the surface of thin fibers and becomes less discernible with the fiber's growth. This structural change is consistent with the proposal that thinner fibers are denser than thicker ones, that is, that the molecule packing decreases with the increasing of the fibers' diameter.
منابع مشابه
Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension 1.3.
We report protocols and techniques to image and mechanically manipulate individual fibrin fibers, which are key structural components of blood clots. Using atomic force microscopy-based lateral force manipulations we determined the rupture force, FR, f fibrin fibers as a function of their diameter, D, in ambient conditions. As expected, the rupture force increases with increasing diameter; howe...
متن کاملAtomic Force Microscopy Application in Biological Research: A Review Study
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...
متن کاملHigh Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)
In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...
متن کاملEvidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
Fibrin fibers form the structural scaffold of blood clots and perform the mechanical task of stemming blood flow. Several decades of investigation of fibrin fiber networks using macroscopic techniques have revealed remarkable mechanical properties. More recently, the microscopic origins of fibrin's mechanics have been probed through direct measurements on single fibrin fibers and individual fib...
متن کاملForced unfolding of coiled-coils in fibrinogen by single-molecule AFM.
Fibrinogen is a blood plasma protein that, after activation by thrombin, assembles into fibrin fibers that form the elastic network of blood clots. We used atomic force microscopy to study the forced unfolding of engineered linear oligomers of fibrinogen, and we show that forced extension of the oligomers produces sawtooth patterns with a peak-to-peak length consistent with the independent unfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomacromolecules
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2011